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In this work the inner surface geometry of a cylindrical furnace wall is estimated using inverse process
method combined with grey prediction model. In estimating process a virtual area extended from the
inner surface of furnace wall is used for analysis. The heat conduction equation and the boundary condi-
tion are first discretized by finite difference method to form a linear matrix equation; the inverse model is
then optimized by linear least-squares error method and the temperatures of virtual boundary are
obtained from a few of measured temperatures in furnace wall using the linear inverse model; and finally
the temperature distribution of system is got by direct process and the inner surface geometry of furnace
wall can be estimated accordingly. The result shows that using inverse process combined with grey pre-
diction model the geometry can be exactly estimated from relatively small number of measured temper-
atures. Moreover, the effects of measurement error, location, and number of measured points on the
estimation for inner surface geometry of furnace wall are discussed in detail.

� 2009 Published by Elsevier Ltd.
1. Introduction

In heat conduction problem, if the boundary and initial condi-
tions and the material properties are given, the temperature field
of the system can be directly solved. This is the so-called well-
posed problem and has the so-called direct solution. If the
boundary and initial conditions and the material properties are
unknown, but the temperature variations at some specific points
in the system are given, the boundary conditions (boundary geom-
etry), initial conditions, and material properties can be inversely
estimated. This is the so-called ill-posed problem [1] and has the
so-called inverse solution. In inverse heat conduction problem, if
the temperatures at some appropriate points on the surface or in-
side the solid are measured by an infrared optical thermometer or
a thermo-couple, the data can then be used to find the initial val-
ues and boundary conditions (temperature or boundary geometry)
or to analyze some significant parameters, such as thermal conduc-
tivity [2,3], surface heat flux [4–6].

The inverse problem of undetermined geometry has been
widely used in various industrial applications, for examples, the
prediction of geometry of blast furnace inner wall, the prediction
of crevice and pitting of furnace wall and the optimization of
geometry [7]. If the boundary geometry is unknown, the calculated
region cannot be determined due to unknown boundary. Thus, the
Elsevier Ltd.

40; fax: +886 6 2342081.
hen).
inverse problem becomes extremely complicated. As for the
estimate of undetermined geometry of the boundary by inverse
process, a general method was first developed in 1986 by Hsieh
and Kassab [8]. This method can also be applied for the estimation
of non-linear geometry. A three-dimensional geometry was suc-
cessfully predicted by the finite element methods proposed by
Met et al. [9] and Alexaudrou [10] in 1991. In 1997, Huang and
Chao [11] estimated an irregular boundary using a boundary ele-
ment approach by both conjugate gradient and Levenberg–Marqu-
ardt methods. He found that the result obtained by the conjugate
gradient method is better than the Levenberg–Marquardt method.
The former has many advantages include: (i) needs very short
computer time; (ii) does not require a very accurate initial guess
for the boundary shape; and (iii) needs less number of sensors.
In 1999, Huang and Chen [12] further extended the inverse geom-
etry problem to a multiple region domain for estimating the
boundary configurations varied with time and space. This ap-
proach can be used as a nondestructive evaluation technique and
applied to some problems such as frost thickness estimation in
refrigeration system.

Grey theory was pioneered by professor Deng in 1982 [13]. It is
especially useful for prediction. Professor Deng considered that
most of the existing systems are ‘‘generalized energy systems”,
and emphasized that non-negative smooth discrete functions can
be transformed into a series which fits in an appropriate exponen-
tial law, the so-called grey exponential law. The key technique for
grey prediction is to obtain a new series from an original series
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Nomenclature

A constant matrix constructed from thermal properties
and space coordinates

B coefficient matrix of C
Bi Biot number, h�ro=k
C vector constructed from the unknown boundary condi-

tions
D vector constructed from the boundary conditions
E product of A�1 and B
E, F error function
h heat transfer coefficient
k thermal conductivity
R reverse matrix
Ri parameter of the deterministic grey dynamic model
�r dimensional radius of the cylinder
r dimensionless radius of the cylinder
(r, h) cylindrical coordinate
Si parameter of the deterministic grey dynamic model
T dimensional temperature
T dimensionless temperature
T temperature matrix
T(r, h) temperature at each grid point (r, h)

t time
U(1) input series of the deterministic grey dynamic model
X(0) The initial seriesbX ð0Þ predicted value of X(0)

X(1) output series of the deterministic grey dynamic model

Greek symbols
Dr increment of radial coordinate
Dh increment of angular coordinate
x random number, �1 < x < 1
r measurement errors

Subscripts
est estimated data
exact exact temperature
i index of radial coordinate
j index of angular coordinate
mea measured data
m number of unknown physical quantity
n number of the linear equations after discretization
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using accumulated generating operation (AGO), then to form a dif-
ferential equation and get its solution from the new series, and fi-
nally to obtain the prediction result for the original series by means
of inverse accumulated generating operation (IAGO). The grey pre-
diction model GM(1,1) [14] can establish the prediction model
with only four continuous data taken from original series. How-
ever, its prediction accuracy is much affected by the system prop-
erties. In general, the result predicted by GM(1,1) is satisfactory
only for the system fitting the grey exponential law. Chen and Tien
[15,16] estimated the prediction model parameters using deter-
ministic convergence scheme and proposed a method for predic-
tion, namely, deterministic grey dynamic model (DGDM). There
is a transfer function existing between the input and output series
for this model, so the prediction accuracy can be largely promoted.
In this work, DGDM is combined with the inverse process for esti-
mating the inner surface geometry of a furnace wall in order to re-
duce the number of really measured points and promote the work
efficiency.
Fig. 1. Two-dimensional system of cylindrical furnace wall with a sinusoidal inner
surface containing a virtual area.
2. Physical model and governing equations

Fig. 1 shows a two-dimensional system of cylindrical furnace
wall in which �ro is the constant outer radius and �ri is the inner ra-
dius of furnace wall which varies with h, i.e. �ri ¼ �riðhÞ and is the un-
known geometry for prediction. For establishing the physical
model some assumptions are made as follows.

(1) The system is rigid and unmovable.
(2) The system temperature is stable in long operation period.
(3) There is no heat source and sink inside furnace wall.
(4) The physical properties of furnace wall are homogeneous

and isotropic; its thermal conductivity k and heat transfer
coefficient h are taken as constant.

(5) The temperature Ti at inner surface of furnace wall, �ri ¼ �riðhÞ,
is constant.

Under these assumptions the temperature Ti is relatively high
and To at outer surface of furnace wall is relatively low but still
higher than the temperature of surroundings, T1. Heat should dif-
fuse from inner surface to outer surface and then transfer to sur-
roundings due to Ti > To > T1. Therefore, the governing equation
for the steady two-dimensional system of cylindrical furnace wall
can be written as:

@2Tð�r; hÞ
@�r2 þ 1

�r
@Tð�r; hÞ
@�r

þ 1
�r2

@2Tð�r; hÞ
@h2 ¼ 0 ð1Þ

and the accompanying boundary conditions are:

Tð�r; hÞ ¼ Ti; �r ¼ �ri ð2Þ

� k
@Tð�r; hÞ
@�r

¼ hðTo � T1Þ; �r ¼ �ro ð3Þ



C.-R. Su et al. / International Journal of Heat and Mass Transfer 52 (2009) 3595–3605 3597
The periodic condition in h direction is

Tð�r; hÞ ¼ Tð�r; hþ 2pÞ ð4Þ

The dimensionless parameters are taken as:

r ¼
�r
�ro
; ri ¼

�ri

�ro
; ro ¼

�ro

�ro
¼ 1; T ¼ T � T1

Ti � T1
; Bi ¼ h�ro

k
ð5Þ

where Bi is Biot number and Bi = 2.0 is used in this work. Eqs. (1)–
(4) can be transformed to be dimensionless by putting Eq. (5) into
them and written as follows.

@2Tðr; hÞ
@r2 þ 1

r
@Tðr; hÞ
@r

þ 1
r2

@2Tðr; hÞ
@h2 ¼ 0 ð6Þ

Tðr; hÞ ¼ 1; r ¼ ri ð7Þ
@Tðr; hÞ
@r

¼ �BiTðr; hÞ; r ¼ 1 ð8Þ

Tðr; hÞ ¼ Tðr; hþ 2pÞ ð9Þ

where T(r,h) is the temperature at (r,h) and can be obtained from
Eqs. (6)–(9).

In the inverse process for predicting the unknown boundary
geometry, ri = ri(h), a virtual area with an inner boundary, r = rv

and rv < ri(h), is introduced as shown in Fig. 1. The inner surface
of furnace wall has a sinusoidal shape and can be expressed by
the following function.

riðhÞ ¼ 0:6þ 0:1 sinðhþ 45�Þ ð10Þ

There should have a temperature field distributed in the virtual area
due to the heat conduction. The temperature field distribution
would become steady after a long operation period and the temper-
ature at inner boundary of virtual area should be higher than other
boundary. Therefore, the physical model for original system can
also be used for the virtual area.

3. Numerical method

3.1. Direct problem

Because the temperature measurement is not performed in
practice, the measured temperatures for inverse process are then
got from the temperature field of furnace wall obtained by direct
process. In direct process for the system shown in Fig. 1, if the three
boundary conditions of the furnace wall without virtual area, are
given, the governing equation and boundary conditions of Eqs.
(6)–(9) can be discretized by finite difference method and written
as:

1

ðDrÞ2
ðTi�1;j � 2Ti;j þ Tiþ1;jÞ þ

1
ri

1
2Dr
ðTiþ1;j � Ti�1;jÞ

þ 1
r2

i

1

ðDhÞ2
ðTi;j�1 � 2Ti;j þ Tiþ1;jÞ ¼ 0 ð11Þ

Ti;j ¼ 1; r ¼ ri ð12Þ
TIþ1;j � TI�1;j

2Dr
¼ �BiTI;j; r ¼ ro ð13Þ

Ti;o ¼ Ti;N ð14Þ

where Dr and Dh are the increments of dimensionless space coordi-
nates, Ti,j is the dimensionless temperature at grid point (i, j), sub-
script i denotes the ith grid point in r coordinate, subscript j
denotes the jth grid point in h coordinate, subscript I denotes the
grid point at outer surface, r = ro, and subscript N denotes the num-
ber of grid points in h direction. Under the case that all boundary
conditions are given in direct process, the governing equation of
(11) and boundary conditions of (12)–(14) can be rearranged and
form a matrix equation:
An�nTn�1 ¼ Dn�1 ð15Þ

where A is a constant matrix consisting of thermal properties and
space coordinates; T is a vector consisting of temperature field of
discrete points in furnace wall; D is a vector consisting of the known
boundary conditions; and n is the number of discretized linear
equations for this system.

If the boundary conditions are known, the temperature field of
furnace wall system, i.e. vector T, can be obtained from Eq. (15) by
Gauss elimination method in direct process. These temperatures in
the temperature field are then taken as the measured temperatures
needed in inverse process. For avoiding the actual measurement of
temperature inside furnace wall, which needs relatively compli-
cated process and somewhat expensive instruments, a few of tem-
peratures in the temperature field are hence taken as the really
measured temperatures, and DGDM is then used to get the indi-
rectly measured temperatures which are taken as the measured
temperatures for inverse process.

3.2. The deterministic grey dynamic model

If a system consists of an input series U(0)(1), U(0)(2), . . . and an
output series X(0)(1), X(0)(2), . . . and the input series can affect the
output series through a transfer function, then the system is a dy-
namic one. Through the transfer function the effect of the input
series on the output series at some moment can continue to next
several moments. The input series is called leading indicator by
economists and the output series is the predicted series. From
the research by Box et al. [17], the generalized model for describing
continuous dynamic system can be written as:

ð1þ n1Dþ � � � þ npDpÞXðtÞ ¼ gð1þ g1Dþ � � � þ gqDqÞUðtÞ ð16Þ

where D denotes d/dt; np and gq are constants; U and X are input and
output series, respectively. This model is called transfer function
model of (p,q) order.

For prediction by grey model GM(1,1), the original series should
be treated by AGO. Its aim is to reduce the randomness of series. In
this work a prediction method is proposed, which is called deter-
ministic grey dynamic model, simply denotes as DGDM(1,1,1). In
this model the grey differential equation GM(p,q) is replaced by
Eq. (16), the AGO of GM(p,q) is preserved, and the model parame-
ters are estimated by using deterministic convergence scheme.

Assuming that U(0) and X(0) are input and output series of a dy-
namic system, and (U(0)(t),X(0)(t)) can be obtained by means of
observation at equal time intervals, then the DGDM(1,1,1) model
can be established by the following steps.

3.2.1. The representation of the transfer function model
For showing the relationship between variations of X and U, a

prediction model DGDM(1,1,1) is established by the replacement
of the U and X in Eq. (16) by series U(1) and X(1) formed from U(0)

and X(0) through 1-AGO, respectively. In DGDM(1,1,1) the first 1
stands for the first-order derivative of 1-AGO series of X(0) series,
the second 1 stands for the first-order derivative of 1-AGO series
of U(0) series, and the third 1 stands for 1-AGO. Therefore, the grey
dynamic model DGDM(1,1,1) can be written as:

R
dXð1ÞðtÞ

dt
þ Xð1ÞðtÞ ¼ S1

dUð1ÞðtÞ
dt

þ S2Uð1ÞðtÞ; t ¼ 1;2; . . . ;n ð17Þ

where

Xð1ÞðtÞ ¼
Xt

i¼1

Xð0ÞðiÞ; t ¼ 1;2; . . . ;n

Uð1ÞðtÞ ¼
Xt

i¼1

Uð0ÞðiÞ; t ¼ 1;2; . . . ; n
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They are the series formed from X(0) and U(0) by 1-AGO, respectively.
R, S1 and S2 are the model parameters to be estimated.

3.2.2. The deterministic convergence scheme
The deterministic convergence scheme is one method for esti-

mating the model parameters, in which some kind of error can
be reduced to minimum basing on some criterion. To give an
example, if the criterion is to minimize the loss function, then it
can be written as:

EðbÞ ¼ 1
2

Z T

0
ðY ð1Þ � Xð1ÞÞ0XðY ð1Þ � Xð1ÞÞdt ð18Þ

where Y(1) = Y(1)(d, t) denotes the real value in process; X(1) = X(1)(d, t)
denotes the corresponding model value; and X is a weighting ma-
trix. For estimating parameters, the extremum of some function
or functional should be obtained. If the criterion is to minimize
the error function, i.e.

E ¼ Eðg0; g1; . . . ; gmÞ ¼ EðgÞ ð19Þ

where gi is the model parameters to be determined. The error func-
tion defined by Eq. (19) can be regarded as a hypersurface when it is
defined as:

EðgÞ ¼ E0 ð20Þ

E0 is the minimum of the error function, and can be solved by:

E0 ¼ EðgÞjg¼d ð21Þ

The error function can be expanded into a Taylor series at the min-
imum as follows.

EðgÞ ffi E0 þ
@EðgÞ
@g0

����
g¼d

ðg � dÞ þ 1
2
ðg � dÞ0@

2EðgÞ
@g@g0

�����
g¼d

ðg � dÞ ð22Þ

where E is minimum at g = d,
@EðgÞ
@g0

jg¼d ¼ 0; and
@2EðgÞ
@g@g0

jg¼d is posi-
tive definite.

Therefore; EðgÞ ffi E0 þ
1
2
ðg � dÞ0@

2EðgÞ
@g@g0

�����
g¼d

ðg � dÞ ð23Þ

From Eq. (23), the following can be got.

@EðgÞ
@g0

ffi @
2EðgÞ
@g@g0

�����
g¼d

ðg � dÞ ð24Þ

g � d ¼ @2EðgÞ
@g@g0

�����
g¼d

24 35�1

@EðgÞ
@g

����
g¼gðtÞ

" #
ð25Þ

Hence,

gðiþ 1Þ ¼ gðiÞ � @2EðgÞ
@g@g0

�����
g¼d

24 35�1

@EðgÞ
@g

����
g¼gðiÞ

" #
ð26Þ

This is the so-called steepest-descent algorithm.

3.2.3. The evaluation of parameters R, S1, and S2

If some process can be described by the following differential
equation.

a
dY ð1ÞðtÞ

dt
þ Y ð1ÞðtÞ ¼ b1

dUð1ÞðtÞ
dt

þ b2Uð1ÞðtÞ; t ¼ 1;2; . . . ;n ð27Þ

and some model can be represented by Eq. (17), then equations of
(17) and (27) can be represented by the explicit functions,
X(1)(t) = ... and Y(1)(t) = ..., respectively, where Y(1)(t) is the data pro-
duced from the really observed values through 1-AGO; X(1)(t) is the
data produced from the prediction model values through 1-AGO.
Under the case of no interference, the error e(t) = Y(1)(t) � X(1)(t) is
small at the optimized state. If e(t) is small enough, then X(1)(t) is
nearly equal to

bX ð1ÞðtÞ ¼ �RDY ð1ÞðtÞ þ ðS1Dþ S2ÞUð1ÞðtÞ ð28Þ

where D = d/dt. Therefore,

eðtÞ ffi Y ð1ÞðtÞ � bX ð1ÞðtÞ ð29Þ
eðtÞ ffi ðR� aÞDY ð1ÞðtÞ � ½ðS1 � b1ÞDþ ðS2 � b2Þ�Uð1ÞðtÞ ð30Þ

If define

R� a ¼ c1

S1 � b1 ¼ c2

S2 � b2 ¼ c3

and

DY ð1ÞðtÞ ¼ v1ðtÞ
� DUð1ÞðtÞ ¼ v2ðtÞ
� Uð1ÞðtÞ ¼ v3ðtÞ

where vi, i = 1, 2, 3, is obtained by fitting Y(1) and U(1) to a cubic
spline curve. Then the following can be obtained:

eðtÞ ffi
X3

i¼1

civ i

e2ðtÞ ffi
X3

i¼1

X3

j¼1

cicjv iðtÞv jðtÞ

Hence we have

E ¼
Z n

1
e2ðtÞdt ¼

X3

i¼1

X3

j¼1

cicjwij ð31Þ

where

wij ¼
Z n

1
v iv jdt ¼

Xn

t¼1

v iðtÞv jðtÞ ¼ wji ð32Þ

Eq. (31) can also be written as

E ¼ c0wc ð33Þ

where

c0 ¼ ½c1; c2; c3�

w ¼
w11; . . . ; w13

. . .

w31; . . . ; w33

264
375

Comparison of Eq. (33) with (23) shows that the two equations are
equivalent and E0 = 0, hence

@2EðgÞ
@g@g0

jg¼d ¼ 2w ð34Þ

For
@2EðgÞ
@g@g0

jg¼d and
@EðgÞ
@g
jg¼gðiÞ in Eq. (26), the former is obtained

from Eq. (34) and the latter is got by putting Eq. (29) into Eq. (31)
and being numerically differentiated. The bX ð1ÞðtÞ in Eq. (29) is the
solution of Eq. (17). Eq. (17) can be written as a matrix equation:

DG ffi F ð35Þ



Fig. 2. The schematic diagram for the locations of measured points and predicted
points, and the calculated grid of a furnace wall with a sinusoidal inner surface.
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where

D ¼

� dXð1ÞðtÞ

dt jt¼1;
dUð1ÞðtÞ

dt jt¼1; Uð1Þð1Þ

� dXð1ÞðtÞ
dt jt¼2;

dUð1ÞðtÞ
dt jt¼2; Uð1Þð2Þ

..

. ..
. ..

.

� dxð1ÞðtÞ
dt jt¼n;

dUð1ÞðtÞ
dt jt¼n; Uð1ÞðnÞ

26666664

37777775
G ¼ ½R; S1; S2�T

F ¼

Xð1Þð1Þ
Xð1Þð2Þ

. . .

Xð1ÞðnÞ

266664
377775

And G = [R,S1,S2]T can be regarded as a correspondent of g in Eq.
(26). The solution of least-squares method, g0 = [R0,S10,S20]T =
(DTD)�1DTF, can be taken as the initial value for the iteration pro-
cess; and dXð1ÞðtÞ

dt and dUð1ÞðtÞ
dt can be obtained by fitting X(1) and U(1)

to a cubic spline curve.

3.2.4. The application of Fourier series to the fitting of leading indicator
Let

dUð1ÞðtÞ
dt

ffi a0 þ
Xk

p¼1

fap cos½pwðt � 1Þ� þ bp sin½pwðt � 1Þ�g;

t ¼ 2;3; . . . ; nþ nf ð36Þ

Then integrating Eq. (36) gives

Uð1ÞðtÞ ffi Uð0Þð1Þ þ a0ðt � 1Þ

þ
Xk

p¼1

sin½pwðt � 1Þ�
pw

ap þ
1� cos½pwðt � 1Þ�

pw
bp

� �
;

t ¼ 2;3; . . . ; nþ nf ð37Þ

where w has value of 2p/(n + nf); k has integral value among
[(n + nf)/2] � 1; nf is the number at prediction time after prediction
origin. a0, ap, and bp in Eq. (37) are the parameters to be estimated. If
n + nf is taken as an even number, the fitting error of the leading
indicator is exactly equal to zero.

3.2.5. The determination of Fourier coefficients
Eq. (37) can be written as

BbA ffi YN ð38Þ
where

B¼

1;
sinw

w
;

sin2w
2w

; ...;
sinkw

kw
;
1�cosw

w
;

1�cos2w
2w

; ...;
1�coskw

kw
;

2;
sin2w

w
;

sin4w
2w

; ...;
sin2kw

kw
;
1�cos2w

w
;

1�cos4w
2w

; ...;
1�cos2kw

kw
;

...;

...

z;
sinzw

w
;

sin2zw
2w

; ...;
sinzkw

kw
;
1�coszw

w
;

1�cos2zw
2w

; ...;
1�coszkw

kw
;

266666666664

377777777775

YN ¼

Uð1Þð2Þ � Uð0Þð1Þ
Uð1Þð3Þ � Uð0Þð1Þ

. . .

Uð1Þðzþ 1Þ � Uð0Þð1Þ

266664
377775

z ¼ nþ nf

The solution of Eq. (38) obtained by least-squares method is

bA ¼ ½a0; a1; . . . ; ak; b1; b2; . . . ; bk�T ¼ ðBT BÞ�1BT YN ð39Þ
By 1-IAGO to U(1) of Eq. (37), the whitening values can be got as
follows.bU ð0Þð1Þ ¼ Uð1Þð1Þ ¼ Uð0Þð1Þ ð40ÞbU ð0ÞðtÞ ¼ bU ð1ÞðtÞ � bU ð1Þðt � 1Þ; t ¼ 2;3; . . . ; nþ nf ð41Þ
3.2.6. The evaluation of bX ð0Þ
Putting Eqs. (36) and (37) into Eq. (17) obtains

Xð1ÞðtÞ ¼ Ae�
ðt�1Þ

R

þ S1 a0 þ
Xk

p¼1

ap
cos½pwðt � 1Þ� þ Rpw sin½pwðt � 1Þ�

1þ R2p2w2

(

þ
Xk

p¼1

bp
sin½pwðt � 1Þ� � Rpw cos½pwðt � 1Þ�

1þ R2p2w2

)

þ S2 Uð0Þð1Þ þ a0ðt � 1Þ � Ra0 þ
Xk

p¼1

bp

pw

(

þ
Xk

p¼1

1
pw sinðpwt � 1Þ � R cosðpwt � 1Þ

1þ R2p2w2

" #
ap

�
Xk

p¼1

R sinðpwt � 1Þ þ 1
pw cosðpwt � 1Þ

1þ R2p2w2

" #
bp

)
ð42Þ

where A is an arbitrary constant which can be got from the given
X(1)(1). By 1-IAGO to X(1) of Eq. (42), the whitening values bX ð0Þ can
be obtained, which is the prediction values of output series wanted
by the present model.bX ð0Þð1Þ ¼ bX ð1Þð1Þ ð43ÞbX ð0ÞðtÞ ¼ bX ð1ÞðtÞ � bX ð1Þðt � 1Þ; t ¼ 2;3; . . . ;nþ nf ð44Þ

To verify the appropriateness for application of DGDM(1,1,1) to the
heat conduction problem, as shown in Fig. 2, 10 really measured
temperatures at outer surface of furnace wall (r = 1.0) are taken as



Table 1
The results predicted by DGDM(1,1,1) with a input series taken from the temperatures at outer surface of furnace wall (r = 1.0) and a prediction series taken from the
temperatures at various measured locations under the case without real measurement error, i.e. r = 0%.

Prediction location r Prediction grid point i Indirectly measured value bX ð0ÞðiÞ Really measured value X(0)(i) Error percentage of indirect measurement (%)

0.95 5 0.46504 0.46504 0
0.95 6 0.43705 0.43700 0.01
0.95 7 0.43707 0.43700 0.01
0.95 8 0.46506 0.46505 0
0.95 9 0.50919 0.50920 0
0.95 10 0.55992 0.55998 �0.01

0.9 6 0.48091 0.48070 0.04
0.9 7 0.48096 0.48070 0.05
0.9 8 0.51188 0.51183 0.01
0.9 9 0.56057 0.56068 �0.02
0.9 10 0.61649 0.61684 �0.06

0.85 7 0.52766 0.52763 0.01
0.85 8 0.56170 0.56237 �0.12
0.85 9 0.61534 0.61649 �0.19
0.85 10 0.67691 0.67872 �0.27

0.8 8 0.61603 0.61729 �0.20
0.8 9 0.67522 0.67744 �0.33
0.8 10 0.74306 0.74656 �0.47

0.75 9 0.74201 0.74457 �0.34
0.75 10 0.81696 0.82160 �0.56

Table 2
The results predicted by DGDM(1,1,1) with a input series taken from the temperatures at outer surface of furnace wall (r = 1.0) and a prediction series taken from the
temperatures at various measured locations under the case with a real measurement error, r = ±5%.

Prediction location r Prediction grid point i Indirectly measured value bX ð0ÞðiÞ Really measured value X(0)(i) Error percentage of indirect measurement (%)

0.95 5 0.52672 0.48752 8.04
0.95 6 0.50453 0.42728 18.08
0.95 7 0.52665 0.43957 19.81
0.95 8 0.56188 0.47277 18.85
0.95 9 0.59546 0.49183 21.07
0.95 10 0.67090 0.55029 21.92

0.9 6 0.50059 0.48785 2.61
0.9 7 0.51058 0.48263 5.79
0.9 8 0.53819 0.49697 8.29
0.9 9 0.56492 0.56954 �0.81
0.9 10 0.64166 0.62239 3.10

0.85 7 0.54708 0.54619 0.16
0.85 8 0.57629 0.54583 5.58
0.85 9 0.60478 0.63006 �4.01
0.85 10 0.68614 0.64483 6.41

0.8 8 0.62124 0.61555 0.92
0.8 9 0.65390 0.66050 �1.00
0.8 10 0.74758 0.71551 4.48

0.75 9 0.73061 0.77187 �5.35
0.75 10 0.83693 0.84623 �1.10
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the leading indicator, U(0)(i), i = 1, 2, ..., 10, and four really measured
temperatures (r = 0.95) are taken as the prediction series, X(0)(i), for
establishing DGDM(1,1,1). The predicted results are shown in Table
1. Under the case without consideration of measurement error, i.e.
r = 0% the indirectly measured temperatures bX ð0Þð5Þ � bX ð0Þð10Þ
predicated by this model are very consistent with the really mea-
sured temperatures. For further understanding the accuracy of the
result predicted from various locations by this model, various pre-
diction ways are considered as shown in Fig. 2. The results are
shown in Tables 1 and 2, respectively. It can be shown from Table
1 that under the case without real measurement error, r = 0% the
indirectly measured temperatures are very consistent with the
really measured temperatures for any prediction location.

Table 2 shows the results for various prediction ways under the
case with a real measurement error, r = ±5%. It can be shown that
the indirect measurement errors are larger than the real measure-
ment errors when six points are predicted by prediction model
established from four points data. This phenomenon can be as-
cribed to the number of predicted data larger than the number of
data for establishing model and to the effect of real measurement
error, which make the needed information insufficient and the sys-
tem characteristics vague. When the number of data for establish-
ing model is equal to or larger than the number of predicted data,
the accuracy of prediction is still satisfactory even under the case
with consideration of real measurement error. It is obvious from
the results stated above that the temperatures obtained by
DGDM(1,1,1) can be used as the measured temperatures for esti-
mating the inner surface geometry of furnace wall in inverse
process.

3.3. Inverse problem

In the inverse process for estimating the inner surface geometry
of furnace wall, because the boundary geometry, ri(h), is unknown,
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the area for calculation cannot be sure so that the inverse process
cannot be performed. Therefore, the concept of virtual area is then
introduced in this work. As shown in Fig. 1, a virtual area is added
in r < ri and some assumptions for this virtual area are made as fol-
lows. The virtual area has the same thermal conductivity, govern-
ing equation, basic assumption, and boundary conditions (except
for the inner boundary of virtual area) as the actual system. There-
fore, Eq. (12) can be changed as

Tv;j ¼ Td; r ¼ rv ð45Þ

where rv = 0.3 is used in this work, the subscript m of Tv,j denotes the
grid point at virtual boundary in r direction; Td is the temperature at
grid point (m, j) of virtual boundary.

For performing inverse operation, Eqs. (11), (13), (14), and (45)
would be rearranged, and the virtual system can be represented by
the following matrix equation.

An�nTn�1 ¼ Bn�mCm�1 ð46Þ

where A is a constant matrix consisting of thermal properties and
space coordinates; T is a vector consisting of temperatures of mea-
sured points; vector C consists of temperature, Td(v,j), of discrete
points for determination; B is the coefficient matrix of C; n is the
number of discretized linear equations; and m is the number of un-
known boundary conditions.

It is clear that the linear inverse model formed by matrix equa-
tion (46) does not need the assumption of function form for the un-
known state and the initially guessed values, which are just the
main advantages of reverse matrix method. Putting the measured
data into T in matrix equation, hence the measured value can be
represented as Tmea.

If the estimated value Cest is given, then Test can be solved from
Eq. (46), i.e.

ATest ¼ BCest ð47Þ

The two sides of Eq. (47) are multiplied by A�1, then

Test ¼ A�1BCest ¼ ECest ð48Þ

where E = A�1B.
Comparing estimated value Test and measured value Tmea, their

difference can be represented by an error function F.

F ¼ ðTest � TmeaÞTðTest � TmeaÞ ð49Þ

Putting Eq. (48) into Eq. (49) obtains

F ¼ ðECest � TmeaÞTðECest � TmeaÞ

¼ CT
estE

T ECest � TT
meaECest � CT

estE
T Tmea þ TT

meaTmea ð50Þ

Differentiating error function F with respect to Cest and letting it
equal to zero, the minimum of F can be obtained.

@F
@Cest

¼ 0 ð51Þ

Eq. (51) can be solved and simplified, hence

ET ECest ¼ ET Tmea ð52Þ

Finally the optimum of estimated value Cest can be got by solving
following equation.

Cest ¼ ðET EÞ�1ET Tmea ¼ RTmea ð53Þ

where R = (ETE)�1ET is called the reverse matrix of the unknown
boundary conditions.

In sum, if measured value Tmea is given, the optimum of esti-
mated value Cest can be obtained from the reverse matrix. There-
fore, the unknown state in inverse problem can be directly
solved. This is the so-called linear least-squares error method.
In most experimental methods, the temperatures of discrete
points inside furnace wall need not be all measured. In this work only
a few measured temperatures are used to solve the temperatures of
virtual boundary. A matrix model with reduced dimension can be
re-established by only the elements related with measured points,
which are parts of the elements in the matrix Rm�n and vector Tn�1

of Eq. (53). Therefore, the matrix Rm�n and vector Tn�1 are, respec-
tively, reduced as Rm�n0 and Tn0�1, where n0 < n and the number of ele-
ments in vector Tn0�1 is equal to the number of selected measurement
points, in other words, the dimension of matrix Rm�n0 may vary with
vector Tn0�1, i.e. the number of measured points would affect the
dimension of whole operation matrix. Because Eq. (46) consists of dif-
ference equations related to measured temperatures and measured
point locations and Eq. (15) consists of equations related to tempera-
ture field of whole furnace wall system, the dimension of matrix equa-
tion (46) would be much smaller than that of Eq. (15).

The main aim of the present work is to obtain the inner surface
geometry of furnace wall. Using governing Eq. (11) and boundary
conditions consisting of the outer surface temperature TI,j of fur-
nace wall and the estimated temperature Td(v,j) of virtual boundary
obtained from Eq. (53), the temperature field of furnace wall and
virtual area can be simply solved by direct process. The isothermal
line, T(r,h) = 1, in temperature field is just the inner surface geom-
etry of furnace wall. It should be noticed that when the isothermal
line does not lie on calculated grid points, the exact locations of
isothermal line should be calculated by interpolation.

Summing up the matrix relation in direct and inverse problems
stated above, Eq. (11) can be re-written, for the arrangement of
main elements, as follows.

aiTi�1;j þ biTi;j þ ciTiþ1;j þ diTi;j�1 þ eiTi;jþ1 ¼ 0 ð54Þ

where ai�ei are constant parameters of space coordinates. Eqs. (13),
(14), and (45) can be rearranged and represented as a linear alge-
braic relation of matrixes.

AT ¼ BC ð55Þ

The temperature of virtual boundary, vector C, can be solved using
linear least-squares error method in inverse problem.

In Eq. (55)
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Fig. 3. The temperature field of virtual area and furnace wall with a sinusoidal inner
surface, which obtained from four directly measured temperatures and six
indirectly measured temperatures calculated by DGDM(1,1,1) at r = 0.95 under
the case of neglecting measurement error.
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I is a unit matrix of J order, O is zero matrix of J order,
sur = bI � 2cIBiDr.

T ¼ T1 � � � Ti � � � TI

� �T

Ti ¼ Ti;1 � � � Ti;j � � � Ti;J½ �T

B ¼ B1 O � � � � � � O
� �T

J�ðI�JÞ

B1 ¼ �a1I

C ¼ Tv;1 � � � Tv ;j � � � Tv;J½ �T

The temperatures of virtual boundary obtained from above method
and the temperatures of outer surface of furnace wall both can be
used to solve the temperature field, vector T, of furnace wall and
virtual area in direct problem. The linear algebraic relation of ma-
trixes can be changed as

AT ¼ D

where

A ¼
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T ¼ T1 � � � Ti � � � TI�1
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Ti ¼ Ti;1 � � � Ti;j � � � Ti;J½ �T

D ¼ Dv O � � � O DI�1
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Fig. 4. The inner surface geometry of furnace wall predicted from the temperatures
of different measured points and the indirectly measured temperatures calculated
by DGDM(1,1,1) at r = 0.95 under the case of neglecting the measurement error, i.e.
r = 0%. (N, number of measured points; NF, number of predicted points.)
4. Results and discussion

It has been shown in Section 3.2 that the results or the temper-
atures in furnace calculated by DGDM(1,1,1) is satisfactory. Hence
the measured temperatures needed for inverse process can be ta-
ken partly from the really measured temperatures and partly from
the indirectly measured temperatures obtained from a few of
really measured temperatures through DGDM(1,1,1). To verify
the appropriateness of the present method, it is necessary to dis-
cuss the effect of different numbers of measured points with differ-
ent locations on the predicted result for the inner surface geometry
of furnace wall.

In practice, the temperature measurement always contains
some degree of error, of which magnitude depends upon the mea-
suring method employed. Therefore, the simulated temperature
measurement adopted in the inverse problem is also considered
to include measurement errors. For reasons of practicality, the
present study adds a random error noise to the exact temperature
values computed from the direct problem. Hence, the measured
dimensionless temperature, Tmea, is expressed as

Tmea ¼ Texactð1þ rxÞ ð56Þ

where Texact is the field temperature of the measured points ob-
tained from the direct process, x is a random number between
�1 and 1, and r is the standard deviation of the measurement error.

Fig. 3 shows the temperature field of virtual area and furnace
wall with a sinusoidal inner surface, which is obtained from four
directly measured temperatures and six indirectly measured tem-
peratures calculated by DGDM(1,1,1) at r = 0.95 under the case of
neglecting measurement error. The isothermal line, T(ri,h) = 1, in
Fig. 3 is just the inner surface geometry of furnace wall, which is
what the present work wants. Above this isothermal curve is the
furnace wall and below is the virtual area. Fig. 4 shows the results



Fig. 6. The effect of measurement error, r = +5%, �5%, and ±5% on the inner surface
geometry of furnace wall estimated by DGDM(1,1,1)6–4 from measured points of
r = 0.95.
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predicted from both temperatures of various measured points and
indirectly measured temperatures calculated by DGDM(1,1,1) at
r = 0.95 under the case without considering measurement error.
The indirectly measured temperatures calculated from grey predic-
tion are very consistent with the real temperatures when measure-
ment error is not considered. Therefore, the inner surface geometry
can be quite exactly estimated using these temperatures. Under
the case with measurement error r = ±5%, the estimated result is
shown in Fig. 5, the deviation of estimation for the inner surface
geometry of furnace wall has an increasing trend due to the num-
ber of predicted points calculated by DGDM(1,1,1) not less than
really measured points. When the number of predicted points cal-
culated by DGDM(1,1,1) is less than the really measured points,
the estimated result is then very consistent with the result (dotted
curve) estimated without using DGDM(1,1,1).

For studying the effect of measurement error on the estimation
of inner surface geometry of furnace wall, 10 grid points at r = 0.95
are selected, which consist of four points calculated by
DGDM(1,1,1) and six really measured points, simply denoted
DGDM(1,1,1)6–4. The grid points are so selected that the number
of really measured points can be decreased and the accuracy of
estimation is still preserved. As shown in Fig. 6, the estimated
thickness of furnace wall is slightly thinner than the original thick-
ness under the case of r = +5%, which displays the geometry is
slightly over estimated. Under the case of r = �5%, the estimated
thickness of furnace wall is slightly thicker than the original thick-
ness and this displays the geometry is slightly under estimated.
This phenomenon can be ascribed to higher measured values being
produced by positive measurement error. In the case that the inner
surface temperatures of furnace wall are fixed, only thinner fur-
nace wall can produce higher measured values, and lower mea-
sured values are produced by thicker furnace wall. The results
are quite consistent with the physical phenomenon. Moreover, in
the case of r = ±5% the estimated result has slightly irregular undu-
lation as compared to the exact solution. The estimated results are
shown in Fig. 7 for the measurement error of r = ±1%, ±2%, and ±3%,
respectively. For the case with measurement error r = ±1%, the
Fig. 5. The inner surface geometry of furnace wall predicted from the temperatures
of different measured points and the indirectly measured temperatures calculated
by DGDM(1,1,1) at r = 0.95 under the case with a measurement error, r = ±5%. (N,
number of measured points; NF, number of predicted points.)

Fig. 7. The effect of measurement error, r = 0%, ±1%, ±2%, and ±3%, on the inner
surface geometry of furnace wall estimated by DGDM(1,1,1)6–4 from measured
points of r = 0.95.
estimated geometry has a slight deviation from the real values.
The estimated values are also increased as measurement error in-
creased to ±2% and ±3%. However, the estimated geometry is still
quite exact.

Fig. 8 shows the effect of measured point locations, r = 0.95,
0.85, and 0.75, on the estimation of inner surface geometry of fur-
nace wall estimated by DGDM(1,1,1)6–4 for measurement error
r = ±5%. It can be found that the estimated result is better for the
measured points most near inner surface and the estimation devi-
ation would increase with the increase of distance between the
measured points and the boundary to be determined. For the



Fig. 8. The effect of measured point location, r = 0.95, 0.85, and 0.75, on the inner
surface geometry of furnace wall estimated by DGDM(1,1,1)6–4 for measurement
error r = ±5%.

Fig. 10. The effect of measured point number on the inner surface geometry of
furnace wall estimated by DGDM(1,1,1)6–4 for measurement error r = ±5%.
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thicker furnace wall at 135� < h < 315�, the estimation deviation is
obviously larger than other thinner furnace wall. These results dis-
play that the measured temperatures decrease as the measured
points are farther from inner surface, in other words, the measure-
ment error is an important factor for the estimation of inner sur-
face geometry of furnace wall. In any case, the estimated result is
still quite precise even for the measured locations much near outer
surface.

For studying the effect of measured point number on the esti-
mation of inner surface geometry, the inner surface geometry is
first estimated by the values calculated by DGAM(1,1,1)6–4 at
Fig. 9. The effect of measured point number on the inner surface geometry of
furnace wall estimated by DGDM(1,1,1)6–4 for measurement error r = ±5%.
r = 0.95 for the measurement error r = ±5%. The estimated result
is shown in Fig. 9. It can be seen that the estimation deviation is
relatively large for 135� < h < 315� due to the farther distance be-
tween measured points and boundary, and the other area has quite
well estimated result. When a row of measured points are progres-
sively added at r = 0.85 and r = 0.75, the result is obviously im-
proved for the inner surface far removed from the measured
points. Moreover, there is another measurement way as shown
in Fig. 10. The measured locations at r = 0.75 are first arranged
and a satisfactory result can be obtained because these locations
are quite near the boundary to be determined. When the number
of measured points is increased, i.e. a row of measured points are
progressively added at r = 0.85 and r = 0.95, the accuracy of estima-
tion can be somewhat promoted. In sum, increasing the number of
measured points is indeed able to promote the accuracy of
estimation.

5. Conclusions

In this work the inverse matrix method combined with
DGDM(1,1,1) has been shown that it can be successfully used to
estimate the inner surface geometry of furnace wall. It has advan-
tages as follows. The unknown state to be estimated is first repre-
sented by a column vector and the estimated values can be
obtained by only one operation process in which no assumptions
are needed for the function form of unknown state, and the initially
guessed values and iteration operation are also not necessary. It is
quite efficient for treating unknown conditions with complexity.
The accuracy of estimated values is increased with decrease in dis-
tance from measured points to the inner surface of furnace wall. In
the case with relatively large measurement error, the accuracy of
estimated values can be improved by increasing the number of
measured points. The estimated values are still accurate even for
measurement error of 5%. In inverse process, the accuracy of esti-
mation increases with increase in the number of measured points,
and even in the case with a higher measurement error, the accu-
racy of estimation is still able to be preserved if the number of
measured points is sufficient. Although the accuracy of estimation
can be increased by the increase of measured points, the measure-
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ment cost is then increased and the efficiency is decreased accord-
ingly. Therefore, the DGDM(1,1,1) can be combined to the inverse
process to reduce the number of really measured points and still
preserve the estimation accuracy. The method proposed in the
present work can be applied to the academic and industrial
circles.
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